Approximation of Hermitian Matrices by Positive (Semi-)Definite Matrices using Modified LDL^H Decompositions

Joscha Reimer

jor@informatik.uni-kiel.de

March 26, 2018
Hermitian and positive (semi-)definite matrix

A $\in \mathbb{C}^{n \times n}$ is Hermitian iff $A = A^H = A^T$.

Eigvenvalues of Hermitian matrices are real.

Diagonal entries of a Hermitian matrix are real.

A positive (semi-)definite matrix is a Hermitian matrix.

Eigenvvalues of a positive semidefinite matrix are non-negative.

Eigenvvalues of a positive definite matrix are positive.

A positive definite matrix is invertible.
Hermitian and positive (semi-)definite matrix

Hermitian matrix

- A $\in \mathbb{C}^{n \times n}$ is Hermitian iff $A = A^H = A^T$.
- Eigenvalues of a Hermitian matrix are real.
- Diagonal entries of a Hermitian matrix are real.

Positive (semi-)definite matrix

- A positive (semi-)definite matrix is a Hermitian matrix.
- Eigenvalues of a positive semidefinite matrix are non-negative.
- Eigenvalues of a positive definite matrix are positive.
- A positive definite matrix is invertible.
Hermitian and positive (semi-)definite matrix

Hermitian matrix

- \(A \in \mathbb{C}^{n \times n} \) is Hermitian iff \(A = A^H = \overline{A^T} \)
Hermitian and positive (semi-)definite matrix

Hermitian matrix

- $A \in \mathbb{C}^{n \times n}$ is Hermitian iff $A = A^H = \overline{A^T}$
- eigenvalues of Hermitian a matrix are real
Hermitian and positive (semi-)definite matrix

Hermitian matrix

- $A \in \mathbb{C}^{n \times n}$ is Hermitian iff $A = A^H = \overline{A^T}$
- eigenvalues of Hermitian a matrix are real
- diagonal entries of a Hermitian matrix are real

Positive (semi-)definite matrix

- a positive (semi-)definite matrix is a Hermitian matrix
- eigenvalues of a positive semidefinite matrix are non-negative
- eigenvalues of a positive definite matrix are positive
- a positive definite matrix is invertible
Hermitian and positive (semi-)definite matrix

Hermitian matrix

- $A \in \mathbb{C}^{n \times n}$ is Hermitian iff $A = A^H = A^\top$
- eigenvalues of Hermitian a matrix are real
- diagonal entries of a Hermitian matrix are real

Positive (semi-)definite matrix

- a positive (semi-)definite matrix is a Hermitian matrix
- eigenvalues of a positive semidefinite matrix are non-negative
- eigenvalues of a positive definite matrix are positive
- a positive definite matrix is invertible
Hermitian and positive (semi-)definite matrix

Hermitian matrix

- $A \in \mathbb{C}^{n \times n}$ is Hermitian iff $A = A^H = \overline{A^T}$
- eigenvalues of Hermitian a matrix are real
- diagonal entries of a Hermitian matrix are real

Positive (semi-)definite matrix

- a positive (semi-)definite matrix is a Hermitian matrix
Hermitian and positive (semi-)definite matrix

Hermitian matrix

- $A \in \mathbb{C}^{n \times n}$ is Hermitian iff $A = A^H = \overline{A^T}$
- eigenvalues of Hermitian a matrix are real
- diagonal entries of a Hermitian matrix are real

Positive (semi-)definite matrix

- a positive (semi-)definite matrix is a Hermitian matrix
- eigenvalues of a positive semidefinite matrix are non-negative
Hermitian and positive (semi-)definite matrix

Hermitian matrix

- A ∈ C^{n×n} is Hermitian iff \(A = A^H = \overline{A^T} \)
- eigenvalues of Hermitian a matrix are real
- diagonal entries of a Hermitian matrix are real

Positive (semi-)definite matrix

- a positive (semi-)definite matrix is a Hermitian matrix
- eigenvalues of a positive semidefinite matrix are non-negative
- eigenvalues of a positive definite matrix are positive
Hermitian and positive (semi-)definite matrix

Hermitian matrix

- $A \in \mathbb{C}^{n \times n}$ is Hermitian iff $A = A^H = \overline{A^T}$
- eigenvalues of Hermitian a matrix are real
- diagonal entries of a Hermitian matrix are real

Positive (semi-)definite matrix

- a positive (semi-)definite matrix is a Hermitian matrix
- eigenvalues of a positive semidefinite matrix are non-negative
- eigenvalues of a positive definite matrix are positive
- a positive definite matrix is invertible
Occurrence of positive (semi-)definite matrices
Occurrence of positive (semi-)definite matrices

Covariance matrix
Occurrence of positive (semi-)definite matrices

Covariance matrix

- Hermitian and positive semidefinite by definition
Occurrence of positive (semi-)definite matrices

Covariance matrix
- Hermitian and positive semidefinite by definition
- usually also positive definite
Occurrence of positive (semi-)definite matrices

Covariance matrix

- Hermitian and positive semidefinite by definition
- usually also positive definite
- often estimated from samples

Correlation matrix

- covariance matrix normalized by inverse of the corresponding standard deviations
- their diagonal entries are one

Numerical optimization

- in each iteration a quadratic function is minimized
- associated matrix has to be positive definite
Occurrence of positive (semi-)definite matrices

Covariance matrix

- Hermitian and positive semidefinite by definition
- Usually also positive definite
- Often estimated from samples

Correlation matrix

- Covariance matrix normalized by inverse of the corresponding standard deviations
- Their diagonal entries are one

Numerical optimization

- In each iteration a quadratic function is minimized
- Associated matrix has to be positive definite
Occurrence of positive (semi-)definite matrices

Covariance matrix

- Hermitian and positive semidefinite by definition
- usually also positive definite
- often estimated from samples

Correlation matrix

- covariance matrix normalized by inverse of the corresponding standard deviations
Occurrence of positive (semi-)definite matrices

Covariance matrix

- Hermitian and positive semidefinite by definition
- usually also positive definite
- often estimated from samples

Correlation matrix

- covariance matrix normalized by inverse of the corresponding standard deviations
- their diagonal entries are one
Occurrence of positive (semi-)definite matrices

Covariance matrix

- Hermitian and positive semidefinite by definition
- usually also positive definite
- often estimated from samples

Correlation matrix

- covariance matrix normalized by inverse of the corresponding standard deviations
- their diagonal entries are one

Numerical optimization
Occurrence of positive (semi-)definite matrices

Covariance matrix
- Hermitian and positive semidefinite by definition
- usually also positive definite
- often estimated from samples

Correlation matrix
- covariance matrix normalized by inverse of the corresponding standard deviations
- their diagonal entries are one

Numerical optimization
- in each iteration a quadratic function is minimized
Occurrence of positive (semi-)definite matrices

Covariance matrix

- Hermitian and positive semidefinite by definition
- usually also positive definite
- often estimated from samples

Correlation matrix

- covariance matrix normalized by inverse of the corresponding standard deviations
- their diagonal entries are one

Numerical optimization

- in each iteration a quadratic function is minimized
- associated matrix has to be positive definite
LDL^H decompositions

A matrix $A \in \mathbb{C}^{n \times n}$ has an LDL^H decomposition if there exist a lower triangle matrix $L \in \mathbb{C}^{n \times n}$ with ones on the diagonal and a diagonal matrix $D \in \mathbb{R}^{n \times n}$ such that $LDL^H = A$ holds.

Each positive semidefinite matrix has a LDL^H decomposition.

Each positive definite matrix has a unique LDL^H decomposition.
LDL^H decompositions

- $A \in \mathbb{C}^{n \times n}$ has an LDL^H decomposition if

 $\exists L \in \mathbb{C}^{n \times n}$ a lower triangle matrix with ones on the diagonal

 $\exists D \in \mathbb{R}^{n \times n}$ a diagonal matrix

 $LDL^H = A$ holds

 Each positive semidefinite matrix has a LDL^H decomposition.

 Each positive definite matrix has a unique LDL^H decomposition.
LDL^H decompositions

- $A \in \mathbb{C}^{n \times n}$ has a LDL^H decomposition if
 - $L \in \mathbb{C}^{n \times n}$ a lower triangle matrix with ones on the diagonal exists

Each positive semidefinite matrix has a LDL^H decomposition.
Each positive definite matrix has a unique LDL^H decomposition.
LDL^H decompositions

- $A \in \mathbb{C}^{n \times n}$ has a LDL^H decomposition if
 - $L \in \mathbb{C}^{n \times n}$ a lower triangle matrix with ones on the diagonal exists
 - $D \in \mathbb{R}^{n \times n}$ a diagonal matrix exists

Each positive semidefinite matrix has a LDL^H decomposition

Each positive definite matrix has a unique LDL^H decomposition
LDL^H decompositions

- $A \in \mathbb{C}^{n \times n}$ has a LDL^H decomposition if
 - $L \in \mathbb{C}^{n \times n}$ a lower triangle matrix with ones on the diagonal exists
 - $D \in \mathbb{R}^{n \times n}$ a diagonal matrix exists
 - $LDL^H = A$ holds

Each positive semidefinite matrix has a LDL^H decomposition.

Each positive definite matrix has a unique LDL^H decomposition.
\(\text{LDL}^H \) decompositions

- \(A \in \mathbb{C}^{n \times n} \) has a \(\text{LDL}^H \) decomposition if
 - \(L \in \mathbb{C}^{n \times n} \) a lower triangle matrix with ones on the diagonal exists
 - \(D \in \mathbb{R}^{n \times n} \) a diagonal matrix exists
 - \(\text{LDL}^H = A \) holds
- each positive semidefinite matrix has a \(\text{LDL}^H \) decomposition
LDL^H decompositions

- $A \in \mathbb{C}^{n \times n}$ has a LDL^H decomposition if
 - $L \in \mathbb{C}^{n \times n}$ a lower triangle matrix with ones on the diagonal exists
 - $D \in \mathbb{R}^{n \times n}$ a diagonal matrix exists
 - $\text{LDL}^H = A$ holds

- each positive semidefinite matrix has a LDL^H decomposition
- each positive definite matrix has a unique LDL^H decomposition
Requirements for an ideal approximation algorithm

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. Donate with $B \in \mathbb{C}^{n \times n}$ the approximation calculated by an ideal approximation algorithm which should ensure the following:

- B should be positive semidefinite.
- $\|B - A\|$ should be controllable.
- Condition number of B should be controllable.
- Positive diagonal entries of A can be preserved in B.
- Calculation of B does need $O(n^3)$ basic operations.
- Calculation of B needs at most memory for $O(n)$ additional values.
- B should be sparse if A is sparse.
- Calculation of B allows to directly overwrite A with B.

Requirements for an ideal approximation algorithm

Let $A \in \mathbb{C}^{n\times n}$ be a Hermitian matrix. Donate with $B \in \mathbb{C}^{n\times n}$ the approximation calculated by an ideal approximation algorithm which should ensure the following:

- B should be positive semidefinite.
Requirements for an ideal approximation algorithm

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. Donate with $B \in \mathbb{C}^{n \times n}$ the approximation calculated by an ideal approximation algorithm which should ensure the following:

- B should be positive semidefinite.
- $\|B - A\|$ should be controllable.
Requirements for an ideal approximation algorithm

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. Donate with $B \in \mathbb{C}^{n \times n}$ the approximation calculated by an ideal approximation algorithm which should ensure the following:

- B should be positive semidefinite.
- $\|B - A\|$ should be controllable.
- Condition number of B should be controllable.
- Positive diagonal entries of A can be preserved in B.
- Calculation of B does need $O(n^3)$ basic operations.
- Calculation of B needs at most memory for $O(n)$ additional values.
- B should be sparse if A is sparse.
- Calculation of B allows to directly overwrite A with B.
Requirements for an ideal approximation algorithm

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. Donate with $B \in \mathbb{C}^{n \times n}$ the approximation calculated by an ideal approximation algorithm which should ensure the following:

- B should be positive semidefinite.
- $\|B - A\|$ should be controllable.
- Condition number of B should be controllable.
- Positive diagonal entries of A can be preserved in B.

Calculation of B does need $O(n^3)$ basic operations.

Calculation of B needs at most memory for $O(n)$ additional values.

B should be sparse if A is sparse.

Calculation of B allows to directly overwrite A with B.
Requirements for an ideal approximation algorithm

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. Donate with $B \in \mathbb{C}^{n \times n}$ the approximation calculated by an ideal approximation algorithm which should ensure the following:

- B should be positive semidefinite.
- $\|B - A\|$ should be controllable.
- Condition number of B should be controllable.
- Positive diagonal entries of A can be preserved in B.
- Calculation of B does need $O(n^3)$ basic operations.
Requirements for an ideal approximation algorithm

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. Donate with $B \in \mathbb{C}^{n \times n}$ the approximation calculated by an ideal approximation algorithm which should ensure the following:

- B should be positive semidefinite.
- $\|B - A\|$ should be controllable.
- Condition number of B should be controllable.
- Positive diagonal entries of A can be preserved in B.
- Calculation of B does need $O(n^3)$ basic operations.
- Calculation of B needs at most memory for $O(n)$ additional values.
Requirements for an ideal approximation algorithm

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. Donate with $B \in \mathbb{C}^{n \times n}$ the approximation calculated by an ideal approximation algorithm which should ensure the following:

- B should be positive semidefinite.
- $\|B - A\|$ should be controllable.
- Condition number of B should be controllable.
- Positive diagonal entries of A can be preserved in B.
- Calculation of B does need $\mathcal{O}(n^3)$ basic operations.
- Calculation of B needs at most memory for $\mathcal{O}(n)$ additional values.
- B should be sparse if A is sparse.
Requirements for an ideal approximation algorithm

Let $A \in \mathbb{C}^{n \times n}$ be a Hermitian matrix. Donate with $B \in \mathbb{C}^{n \times n}$ the approximation calculated by an ideal approximation algorithm which should ensure the following:

- B should be positive semidefinite.
- $\|B - A\|$ should be controllable.
- Condition number of B should be controllable.
- Positive diagonal entries of A can be preserved in B.
- Calculation of B does need $O(n^3)$ basic operations.
- Calculation of B needs at most memory for $O(n)$ additional values.
- B should be sparse if A is sparse.
- Calculation of B allows to directly overwrite A with B.

Decomposition algorithm

function DECOMPOSITION(A)
 for $i \leftarrow 1, \ldots, n$ do
 $d_i \leftarrow A_{ii} - \sum_{j=1}^{i-1} |L_{ij}|^2 d_j$
 for $j \leftarrow i + 1, \ldots, n$ do
 if $d_i \neq 0$ then
 $L_{ji} \leftarrow \left(A_{ji} - \sum_{k=1}^{i-1} L_{jk} \bar{L}_{ik} d_k \right) (d_i)^{-1}$
 else
 $L_{ji} \leftarrow 0$
 end if
 end for
 end for
 $L_{ii} \leftarrow 1$ and $L_{ij} \leftarrow 0$ for all $i, j \in \{1, \ldots, n\}$ with $j > i$
 return L, d
end function

Input:
$A \in \mathbb{C}^{n \times n}$ Hermitian

Output:
$L \in \mathbb{C}^{n \times n}$ lower triangle matrix with ones on the diagonal
$d \in \mathbb{R}^n$
Decomposition algorithm

function DECOMPOSITION(A)
 \(\alpha_i \leftarrow 0 \) for all \(i \in \{1, \ldots, n\} \)
 for \(i \leftarrow 1, \ldots, n \) do
 \(d_i \leftarrow A_{ii} - \alpha_i \)
 for \(j \leftarrow i + 1, \ldots, n \) do
 if \(d_i \neq 0 \) then
 \(L_{ji} \leftarrow \left(A_{ji} - \sum_{k=1}^{i-1} L_{jk} \bar{L}_{ik} d_k \right) (d_i)^{-1} \)
 \(\alpha_j \leftarrow \alpha_j + |L_{ji}|^2 d_i \)
 else
 \(L_{ji} \leftarrow 0 \)
 end if
 end for
 end for
 \(L_{ii} \leftarrow 1 \) and \(L_{ij} \leftarrow 0 \) for all \(i, j \in \{1, \ldots, n\} \) with \(j > i \)
 return \(L, d \)
end function

Input:
\(A \in \mathbb{C}^{n \times n} \) Hermitian

Output:
\(L \in \mathbb{C}^{n \times n} \) lower triangle matrix with ones on the diagonal
\(d \in \mathbb{R}^n \)
Decomposition algorithm

function DECOMPOSITION(A, l, u, ϵ)
 α_i ← 0 for all i ∈ {1, ..., n}
 for i ← 1, ..., n do
 select d_i ∈ \{d ∈ R | d ∈ [l, u], |d| ∉ (0, ϵ)\}
 for j ← i + 1, ..., n do
 if d_i ≠ 0 then
 L_{ji} ← \left(A_{ji} - \sum_{k=1}^{i-1} L_{jk} \overline{L}_{ik} d_k \right) (d_i)^{-1}
 α_j ← α_j + |L_{ji}|^2 d_i
 else
 L_{ji} ← 0
 end if
 end for
 end for
 L_{ii} ← 1 and L_{ij} ← 0 for all i, j ∈ {1, ..., n} with j > i
 return L, d
end function

Input:
A ∈ C^{n×n} Hermitian
l ∈ R ∪ \{-∞\}
u ∈ R ∪ \{∞\}
ϵ ≥ 0
max\{x_i, l, ϵ\} ≤ min\{y_i, u\} for all i ∈ {1, ..., n}

Output:
L ∈ C^{n×n} lower triangle matrix with ones on the diagonal
d ∈ R^n
Decomposition algorithm

function DECOMPOSITION(A, x, y, l, u, ϵ)
 αᵢ ← 0 for all i ∈ {1, . . . , n}
 for i ← 1, . . . , n do
 select (ωᵢ, dᵢ) ∈ \{ (ω, d) ∈ \mathbb{R}² | ω ≥ 0, d ∈ [l, u], |d| \neq (0, ϵ), d + αᵢω² ∈ [xᵢ, yᵢ] \}
 for j ← 1, . . . , i − 1 do
 Lᵢj ← ωᵢLᵢj
 end for
 δᵢ ← dᵢ + ωᵢ²αᵢ − Aᵢi
 for j ← i + 1, . . . , n do
 if dᵢ \neq 0 then
 Lᵢj ← \left(Aᵢj - \sum_{k=1}^{i-1} LᵢₖLᵢᵦ dₖ \right) (dᵢ)⁻¹
 αⱼ ← αᵢ + |Lᵢⱼ|²dᵢ
 else
 Lᵢj ← 0
 end if
 end for
 end for
 Lᵢᵢ ← 1 and Lᵢⱼ ← 0 for all i, j ∈ {1, . . . , n} with j > i
 return L, d, ω, δ
end function

Input:
A ∈ \mathbb{C}^{n \times n} Hermitian
x ∈ (\mathbb{R} \cup \{-∞\})^n
y ∈ (\mathbb{R} \cup \{∞\})^n
l ∈ \mathbb{R} \cup \{-∞\}
u ∈ \mathbb{R} \cup \{∞\}
ϵ ≥ 0
max\{xᵢ, l, ϵ\} ≤ \min\{yᵢ, u\} for all i ∈ {1, . . . , n}

Output:
L ∈ \mathbb{C}^{n \times n} lower triangle matrix with ones on the diagonal
d, ω, δ ∈ \mathbb{R}^n
Decomposition algorithm

\begin{verbatim}
function DECOMPOSITION(A, x, y, l, u, \epsilon)
 \alpha_i \leftarrow 0, p_i \leftarrow i \text{ for all } i \in \{1, \ldots, n\}
 for i \leftarrow 1, \ldots, n do
 select j \in \{i, \ldots, n\} and swap p_i and p_j, swap L_{ik} and L_{jk} for all k \in \{1, \ldots, i - 1\}
 select (\omega_{p_i}, d_i) \in \{ (\omega, d) \in \mathbb{R}^2 \mid \omega \geq 0, d \in [l, u], |d| \notin (0, \epsilon), d + \alpha_{p_i} \omega^2 \in [x_{p_i}, y_{p_i}] \}
 \delta_{p_i} \leftarrow d_i + \omega_{p_i}^2 \alpha_{p_i} - A_{p_ip_i}
 for j \leftarrow 1, \ldots, i - 1 do
 L_{ij} \leftarrow \omega_{p_i} L_{ij}
 end for
 for j \leftarrow i + 1, \ldots, n do
 if d_i \neq 0 then
 L_{ji} \leftarrow \left(A_{p_jp_i} - \sum_{k=1}^{i-1} L_{jk} \bar{L}_{ik} d_k \right) (d_i)^{-1}
 \alpha_{p_j} \leftarrow \alpha_{p_j} + |L_{ji}|^2 d_i
 else
 L_{ji} \leftarrow 0
 end if
 end for
 end for
 L_{ii} \leftarrow 1 \text{ and } L_{ij} \leftarrow 0 \text{ for all } i, j \in \{1, \ldots, n\} \text{ with } j > i
 return L, d, p, \omega, \delta
end function
\end{verbatim}

Input:
\begin{itemize}
 \item A \in \mathbb{C}^{n \times n} \text{ Hermitian}
 \item x \in (\mathbb{R} \cup \{-\infty\})^n
 \item y \in (\mathbb{R} \cup \{\infty\})^n
 \item l \in \mathbb{R} \cup \{-\infty\}
 \item u \in \mathbb{R} \cup \{\infty\}
 \item \epsilon \geq 0
\end{itemize}

max\{x_i, l, \epsilon\} \leq \min\{y_i, u\} \text{ for all } i \in \{1, \ldots, n\}

Output:
\begin{itemize}
 \item L \in \mathbb{C}^{n \times n} \text{ lower triangle matrix with ones on the diagonal}
 \item d, \omega, \delta \in \mathbb{R}^n
 \item p \in \{1, \ldots, n\}^n
\end{itemize}
Decomposition algorithm

```
function DECOMPOSITION(A, x, y, l, u, ϵ)
    αᵢ ← 0, pᵢ ← i for all i ∈ {1, ..., n}
    for i ← 1, ..., n do
        select j ∈ {i, ..., n} and swap pᵢ and pⱼ, swap Lᵢk and Lⱼk for all k ∈ {1, ..., i − 1}
        select (ωᵢ, dᵢ) ∈ {(ω, d) ∈ ℝ² | ω ≥ 0, d ∈ [l, u], |d| /∈ (0, ϵ), d + αᵢωᵢ ∈ [xᵢ, yᵢ]}
        δᵢₚᵢ ← dᵢ + ωᵢ²αᵢ - Aᵢₚᵢ
        for j ← 1, ..., i − 1 do
            Lᵢⱼ ← ωᵢLᵢⱼ
        end for
        for j ← i + 1, ..., n do
            if dᵢ ≠ 0 then
                Lᵢⱼ ← \left( Aᵢⱼpᵢ - \sum_{k=1}^{i-1} LⱼkLᵢk d_k \right) (dᵢ)^{-1}
                αᵢⱼ ← αᵢⱼ + |Lᵢⱼ|^2 dᵢ
            else
                Lᵢⱼ ← 0
            end if
        end for
    end for
    Lᵢᵢ ← 1 and Lᵢⱼ ← 0 for all i, j ∈ {1, ..., n} with j > i
    return L, d, p, ω, δ
end function
```

Input:

- \(A \in \mathbb{C}^{n \times n} \) Hermitian
- \(x \in (\mathbb{R} \cup \{-\infty\})^n \)
- \(y \in (\mathbb{R} \cup \{\infty\})^n \)
- \(l \in \mathbb{R} \cup \{-\infty\} \)
- \(u \in \mathbb{R} \cup \{\infty\} \)
- \(ϵ \geq 0 \)
- \(\max\{x_i, l, ϵ\} \leq \min\{y_i, u\} \) for all \(i \in \{1, \ldots, n\} \)

Output:

- \(L \in \mathbb{C}^{n \times n} \) lower triangle matrix with ones on the diagonal
- \(d, ω, δ \in \mathbb{R}^n \)
- \(p \in \{1, \ldots, n\}^n \)
Matrix algorithm

\[
\text{Matrix} \quad (A, x, y, l, u, \epsilon) := P^T \text{LDL}_H P
\]

where

\[
L, d, p, \omega, \delta := \text{DECOMPOSITION} (A, x, y, l, u, \epsilon),
\]

\[
D := \text{diag} (d)
\]

and

\[
P_{ij} := \begin{cases} 1 & \text{if } j = p_i \\ 0 & \text{else for all } i, j \in \{1, \ldots, n\} \end{cases}
\]

for all valid inputs \(A, x, y, l, u, \epsilon \) of the algorithm.
Matrix algorithm

Define

\[
\text{MATRIX}(A, x, y, l, u, \epsilon) := P^T L D L^H P
\]

where

\[
L, d, p, \omega, \delta := \text{DECOMPOSITION}(A, x, y, l, u, \epsilon),
\]

\[
D := \text{diag}(d) \quad \text{and} \quad P_{ij} := \begin{cases} 1 & \text{if } j = p_i \\ 0 & \text{else} \end{cases} \quad \text{for all } i, j \in \{1, \ldots, n\}
\]

for all valid inputs \(A, x, y, l, u, \epsilon \) of the algorithm.
Definiteness

Let be

\[B := \text{MATRIX}(A, x, y, l, u, \epsilon) \]

where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm.
Definiteness

Let be

\[B := \text{MATRIX}(A, x, y, l, u, \epsilon) \]

where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm.

- \(B \) is positive semidefinite if \(l \geq 0 \).

- \(B \) is positive definite if \(l > 0 \).
Definiteness

Let be

\[B := \text{MATRIX}(A, x, y, l, u, \epsilon) \]

where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm.

- \(B \) is positive semidefinite if \(l \geq 0 \).
- \(B \) is positive definite if \(l > 0 \).
Diagonal values

Let be

\[B := \text{MATRIX}(A, x, y, l, u, \epsilon) \]

where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm.
Diagonal values

Let be

\[B := \text{MATRIX}(A, x, y, l, u, \epsilon) \]

where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm. It holds

\[x_i \leq B_{ii} \leq y_i \text{ for all } i \in \{1, \ldots, n\}. \]
Condition number

Let be

\[B := \text{MATRIX}(A, x, y, l, u, \epsilon) \]

where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm with \(l > 0 \).
Condition number

Let be

\[B := \text{MATRIX}(A, x, y, l, u, \epsilon) \]

where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm with \(l > 0 \). It holds

\[\kappa_2(B) \leq 4 \frac{a^n b}{ln+1} \]

with \(a := \frac{1}{n} \sum_{i=1}^{n} y_i \) and \(b := \min\{u, \max_{i=1,\ldots,n} y_i\} \).
Relation between A and B

Let be

$$B := \text{MATRIX}(A, x, y, l, u, \epsilon)$$

where A, x, y, l, u, ϵ is some valid input for the algorithm with $l > 0$ and

$$L, d, p, \omega, \delta := \text{DECOMPOSITION}(A, x, y, l, u, \epsilon).$$
Relation between A and B

Let be

$$B := \text{MATRIX}(A, x, y, l, u, \epsilon)$$

where A, x, y, l, u, ϵ is some valid input for the algorithm with $l > 0$ and

$$L, d, p, \omega, \delta := \text{DECOMPOSITION}(A, x, y, l, u, \epsilon).$$

It holds

$$B_{ii} = A_{ii} + \delta_i \text{ for all } i \in \{1, \ldots, n\}$$
Relation between A and B

Let be

$$B := \text{MATRIX}(A, x, y, l, u, \epsilon)$$

where A, x, y, l, u, ϵ is some valid input for the algorithm with $l > 0$ and

$$L, d, p, \omega, \delta := \text{DECOMPOSITION}(A, x, y, l, u, \epsilon).$$

It holds

$$B_{ii} = A_{ii} + \delta_i \text{ for all } i \in \{1, \ldots, n\}$$

and

$$B_{ij} = A_{ij}\omega_k \text{ for all } i, j \in \{1, \ldots, n\} \text{ with } i \neq j \text{ and }$$

$$q_{pi} := i \text{ for all } i \in \{1, \ldots, n\}, k := \begin{cases} i & \text{if } q_i > q_j \\ j & \text{else} \end{cases}.$$
Difference

Let be

\[B := \text{MATRIX}(A, x, y, l, u, \epsilon) \]

where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm with \(l > 0 \) and

\[L, d, p, \omega, \delta := \text{DECOMPOSITION}(A, x, y, l, u, \epsilon). \]
Let be
\[B := \text{MATRIX}(A, x, y, l, u, \epsilon) \]
where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm with \(l > 0 \) and
\[L, d, p, \omega, \delta := \text{DECOMPOSITION}(A, x, y, l, u, \epsilon). \]

It holds
\[
\|B - A\|_F^2 = \sum_{i=1}^{n} \left((d_i + \omega_{p_i}^2 \alpha_{p_i} - A_{p_i,p_i})^2 + 2(\omega_{p_i} - 1)^2 \sum_{j=1}^{i-1} |A_{p_i,p_j}|^2 \right)
\]
where \(\alpha \) is the internal variable of the algorithm DECOMPOSITION.
Select ω and d
Select ω and d

Select

$$(\omega_{p_i}, d_i) := \arg\min_{(\omega, d) \in \Lambda_i} (d + \omega^2 \alpha_{p_i} - A_{p_ip_i})^2 + 2(\omega - 1)^2 \sum_{j=1}^{i-1} |A_{p_ip_j}|^2$$
Select ω and d

Select

$$(\omega_{p_i}, d_i) := \arg\min_{(\omega, d) \in \Lambda_i} (d + \omega^2 \alpha_{p_i} - A_{p_i p_i})^2 + 2(\omega - 1)^2 \sum_{j=1}^{i-1} |A_{p_i p_j}|^2$$

with

$$\Lambda_i := \{(\omega, d) \in \mathbb{R}^2 \mid \omega \geq 0, d \in [l, u], |d| \notin (0, \epsilon), d + \alpha_{p_i} \omega^2 \in [x_{p_i}, y_{p_i}]\}$$

in each iteration $i \in \{1, \ldots, n\}$.
Select \(p \)
Select \(p \)

Select

\[
(p_i, \omega_{p_i}, d_i) := \arg \min_{(p_i, \omega, d) \in K_i} \left(d + \omega^2 \alpha_{p_i} - A_{p_ip_i} \right)^2 + 2(\omega - 1)^2 \sum_{j=1}^{i-1} |A_{p_ip_j}|^2
\]
Select p

Select

$$(p_i, \omega_{p_i}, d_i) := \arg \min_{(p_i,\omega,d) \in K_i} \left(d + \omega^2 \alpha p_i - A_{p_i p_i} \right)^2 + 2(\omega - 1)^2 \sum_{j=1}^{i-1} |A_{p_i p_j}|^2$$

with

$$K_i := \{(p_i, \omega, d) \mid p_i \in \{1, \ldots, n\} \setminus \{p_j \mid j \in \{1, \ldots, i - 1\}\}, (\omega, d) \in \Lambda_i \}$$

in each iteration $i \in \{1, \ldots, n\}$.
Sparse matrices

Let be

\[B := \text{MATRIX}(A, x, y, l, u, \epsilon) \]

where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm with \(l > 0 \).
Sparse matrices

Let be

\[B := \text{MATRIX}(A, x, y, l, u, \epsilon) \]

where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm with \(l > 0 \). It holds

\[B_{ij} = 0 \text{ if } A_{ij} = 0 \text{ for all } i, j \in \{1, \ldots, n\} \text{ with } i \neq j. \]
Sparse matrices

Let be

\[B := \text{MATRX}(A, x, y, l, u, \epsilon) \]

where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm with \(l > 0 \). It holds

\[B_{ij} = 0 \text{ if } A_{ij} = 0 \text{ for all } i, j \in \{1, \ldots, n\} \text{ with } i \neq j. \]

Let be

\[L, d, p, \omega, \delta := \text{DECOMPOSITION}(A, x, y, l, u, \epsilon). \]
Sparse matrices

Let be

\[B := \text{MATRIX}(A, x, y, l, u, \epsilon) \]

where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm with \(l > 0 \). It holds

\[B_{ij} = 0 \text{ if } A_{ij} = 0 \text{ for all } i, j \in \{1, \ldots, n\} \text{ with } i \neq j. \]

Let be

\[L, d, p, \omega, \delta := \text{DECOMPOSITION}(A, x, y, l, u, \epsilon). \]

- \(L \) might be less sparse than \(A \).
Sparse matrices

Let be

\[B := \text{MATRIX}(A, x, y, l, u, \epsilon) \]

where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm with \(l > 0 \). It holds

\[B_{ij} = 0 \text{ if } A_{ij} = 0 \text{ for all } i, j \in \{1, \ldots, n\} \text{ with } i \neq j. \]

Let be

\[L, d, p, \omega, \delta := \text{DECOMPOSITION}(A, x, y, l, u, \epsilon). \]

- \(L \) might be less sparse than \(A \).
- \(p \) can be selected so that the sparsity of \(L \) is increased.
Numerical stability

Let be

\[L, d, p, \omega, \delta := \text{DECOMPOSITION}(A, x, y, l, u, \epsilon) \]

where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm with \(l \geq 0, \epsilon > 0 \) and \(\bar{y} := \max_{i=1,...,n} y_i \).
Numerical stability

Let be

\[L, d, p, \omega, \delta := \text{DECOMPOSITION}(A, x, y, l, u, \epsilon) \]

where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm with \(l \geq 0, \epsilon > 0 \) and \(\bar{y} := \max_{i \in 1, \ldots, n} y_i \). Then it holds

\[|d_i| \leq \bar{y} \quad \text{and} \quad |L_{ij}|^2 \leq \frac{\bar{y}}{\epsilon} \quad \text{for all} \quad i, j \in \{1, \ldots, n\}. \]
Numerical stability

Let be
\[L, d, p, \omega, \delta := \text{DECOMPOSITION}(A, x, y, l, u, \epsilon) \]

where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm with \(l \geq 0, \epsilon > 0 \) and
\(\bar{y} := \max_{i \in 1, \ldots, n} y_i \). Then it holds

\[|d_i| \leq \bar{y} \text{ and } |L_{ij}|^2 \leq \frac{\bar{y}}{\epsilon} \text{ for all } i, j \in \{1, \ldots, n\}. \]

Let be
\[B := \text{MATRIX}(A, x, y, l, u, \epsilon) \]

where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm with \(l \geq 0 \) and
\(\bar{y} := \max_{i \in 1, \ldots, n} y_i \).
Let be

\[L, d, p, \omega, \delta := \text{DECOMPOSITION}(A, x, y, l, u, \epsilon) \]

where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm with \(l \geq 0, \epsilon > 0 \) and \(\bar{y} := \max_{i \in 1, \ldots, n} y_i \). Then it holds

\[|d_i| \leq \bar{y} \quad \text{and} \quad |L_{ij}|^2 \leq \frac{\bar{y}}{\epsilon} \quad \text{for all} \quad i, j \in \{1, \ldots, n\}. \]

Let be

\[B := \text{MATRIX}(A, x, y, l, u, \epsilon) \]

where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm with \(l \geq 0 \) and \(\bar{y} := \max_{i \in 1, \ldots, n} y_i \). Then it holds

\[|B_{ij}| \leq \bar{y} \quad \text{for all} \quad i, j \in \{1, \ldots, n\}. \]
Invariance

Let be

\[B := \text{MATRIX}(A, x, y, l, u, \epsilon) \]

where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm and

\[L, d, p, \omega, \delta := \text{DECOMPOSITION}(A, x, y, l, u, \epsilon). \]
Invariance

Let be

\[B := \text{MATRIX}(A, x, y, l, u, \epsilon) \]

where \(A, x, y, l, u, \epsilon \) is some valid input for the algorithm and

\[L, d, p, \omega, \delta := \text{DECOMPOSITION}(A, x, y, l, u, \epsilon). \]

It holds \(B = A \) if

\[x_i \leq A_{ii} \leq y_i \text{ for all } i \in \{1, \ldots, n\} \]

holds and \(\text{PAP}^T \) has a \(\text{LDL}^H \) decomposition with

\[l \leq D_{ii} \leq u \text{ and } |D_{ii}| \notin (0, \epsilon) \text{ for all } i \in \{1, \ldots, n\} \]

and \(P_{ij} = \begin{cases} 1 & \text{if } j = p_i \\ 0 & \text{else} \end{cases} \text{ for all } i, j \in \{1, \ldots, n\}. \)
Complexity

Let $T_U(n)$ be the worst case number of needed basic operations to calculate an unmodified LDLH decomposition for all $A \in C^{n \times n}$ which have a LDLH decomposition and $S_U(n)$ the associated worst case number of needed memory cells.

$T_U(n) = O(n^3)$

$S_U(n) = O(n^2)$

Let $T_D(n)$ be the worst case number of basic operations to calculate DECOMPOSITION(A, x, y, l, u, ϵ) for all valid inputs A, x, y, l, u, ϵ with $A \in C^{n \times n}$ and $S_D(n)$ the associated worst case number of needed memory cells.

$T_D(n) = T_U(n) + O(n^2)$

$S_D(n) = S_U(n) + O(n)$

Let $T_M(n)$ be the worst case number of basic operations to calculate MATRIX(A, x, y, l, u, ϵ) for all valid inputs A, x, y, l, u, ϵ with $A \in C^{n \times n}$ and $S_M(n)$ the associated worst case number of needed memory cells.

$T_M(n) = T_D(n) + O(n^2)$

$S_M(n) = S_D(n) + O(n)$
Complexity

Let $T_U(n)$ be the worst case number of needed basic operations to calculate an unmodified LDL^H decomposition for all $A \in \mathbb{C}^{n \times n}$ which have a LDL^H decomposition.
Complexity

Let $T_U(n)$ be the worst case number of needed basic operations to calculate an unmodified LDL^H decomposition for all $A \in \mathbb{C}^{n \times n}$ which have a LDL^H decomposition.

$$T_U(n) = \mathcal{O}(n^3)$$
Complexity

Let $T_U(n)$ be the worst case number of needed basic operations to calculate an unmodified LDL^H decomposition for all $A \in \mathbb{C}^{n \times n}$ which have a LDL^H decomposition and $S_U(n)$ the associated worst case number of needed memory cells.

$$T_U(n) = \mathcal{O}(n^3)$$
Complexity

Let $T_U(n)$ be the worst case number of needed basic operations to calculate an unmodified LDL^H decomposition for all $A \in \mathbb{C}^{n \times n}$ which have a LDL^H decomposition and $S_U(n)$ the associated worst case number of needed memory cells.

$$T_U(n) = \mathcal{O}(n^3) \quad S_U(n) = \mathcal{O}(n^2)$$
Complexity

Let $T_U(n)$ be the worst case number of needed basic operations to calculate an unmodified LDL^H decomposition for all $A \in \mathbb{C}^{n \times n}$ which have a LDL^H decomposition and $S_U(n)$ the associated worst case number of needed memory cells.

$$T_U(n) = \mathcal{O}(n^3) \quad S_U(n) = \mathcal{O}(n^2)$$

Let $T_D(n)$ be the worst case number of basic operations to calculate $\text{DECOMPOSITION}(A, x, y, l, u, \epsilon)$ for all valid inputs A, x, y, l, u, ϵ with $A \in \mathbb{C}^{n \times n}$ and $S_D(n)$ the associated worst case number of needed memory cells.

$$T_D(n) = T_U(n) + \mathcal{O}(n^2) \quad S_D(n) = S_U(n) + \mathcal{O}(n)$$
Complexity

Let $T_U(n)$ be the worst case number of needed basic operations to calculate an unmodified LDL^H decomposition for all $A \in \mathbb{C}^{n \times n}$ which have a LDL^H decomposition and $S_U(n)$ the associated worst case number of needed memory cells.

\[T_U(n) = \mathcal{O}(n^3) \quad S_U(n) = \mathcal{O}(n^2) \]

Let $T_D(n)$ be the worst case number of basic operations to calculate \textsc{DECOMPOSITION}(A, x, y, l, u, \epsilon) for all valid inputs A, x, y, l, u, ϵ with $A \in \mathbb{C}^{n \times n}$

\[T_D(n) = T_U(n) + \mathcal{O}(n^2) \]
Complexity

Let $T_U(n)$ be the worst case number of needed basic operations to calculate an unmodified LDL^H decomposition for all $A \in \mathbb{C}^{n \times n}$ which have a LDL^H decomposition and $S_U(n)$ the associated worst case number of needed memory cells.

$$T_U(n) = \mathcal{O}(n^3) \quad S_U(n) = \mathcal{O}(n^2)$$

Let $T_D(n)$ be the worst case number of basic operations to calculate $\text{DECOMPOSITION}(A, x, y, l, u, \epsilon)$ for all valid inputs A, x, y, l, u, ϵ with $A \in \mathbb{C}^{n \times n}$ and $S_D(n)$ the associated worst case number of needed memory cells.

$$T_D(n) = T_U(n) + \mathcal{O}(n^2)$$
Complexity

Let $T_U(n)$ be the worst case number of needed basic operations to calculate an unmodified LDL^H decomposition for all $A \in \mathbb{C}^{n \times n}$ which have a LDL^H decomposition and $S_U(n)$ the associated worst case number of needed memory cells.

$$T_U(n) = \mathcal{O}(n^3) \quad S_U(n) = \mathcal{O}(n^2)$$

Let $T_D(n)$ be the worst case number of basic operations to calculate $\text{DECOMPOSITION}(A, x, y, l, u, \epsilon)$ for all valid inputs A, x, y, l, u, ϵ with $A \in \mathbb{C}^{n \times n}$ and $S_D(n)$ the associated worst case number of needed memory cells.

$$T_D(n) = T_U(n) + \mathcal{O}(n^2) \quad S_D(n) = S_U(n) + \mathcal{O}(n)$$
Complexity

Let $T_U(n)$ be the worst case number of needed basic operations to calculate an unmodified LDL^H decomposition for all $A \in \mathbb{C}^{n \times n}$ which have a LDL^H decomposition and $S_U(n)$ the associated worst case number of needed memory cells.

$$T_U(n) = \mathcal{O}(n^3) \quad S_U(n) = \mathcal{O}(n^2)$$

Let $T_D(n)$ be the worst case number of basic operations to calculate $DECOMPOSITION(A, x, y, l, u, \epsilon)$ for all valid inputs A, x, y, l, u, ϵ with $A \in \mathbb{C}^{n \times n}$ and $S_D(n)$ the associated worst case number of needed memory cells.

$$T_D(n) = T_U(n) + \mathcal{O}(n^2) \quad S_D(n) = S_U(n) + \mathcal{O}(n)$$

Let $T_M(n)$ be the worst case number of basic operations to calculate $MATRIX(A, x, y, l, u, \epsilon)$ for all valid inputs A, x, y, l, u, ϵ with $A \in \mathbb{C}^{n \times n}$
Complexity

Let $T_U(n)$ be the worst case number of needed basic operations to calculate an unmodified LDL^H decomposition for all $A \in \mathbb{C}^{n \times n}$ which have a LDL^H decomposition and $S_U(n)$ the associated worst case number of needed memory cells.

$$T_U(n) = \mathcal{O}(n^3) \quad S_U(n) = \mathcal{O}(n^2)$$

Let $T_D(n)$ be the worst case number of basic operations to calculate $DECOMPOSITION(A, x, y, l, u, \epsilon)$ for all valid inputs A, x, y, l, u, ϵ with $A \in \mathbb{C}^{n \times n}$ and $S_D(n)$ the associated worst case number of needed memory cells.

$$T_D(n) = T_U(n) + \mathcal{O}(n^2) \quad S_D(n) = S_U(n) + \mathcal{O}(n)$$

Let $T_M(n)$ be the worst case number of basic operations to calculate $MATRIX(A, x, y, l, u, \epsilon)$ for all valid inputs A, x, y, l, u, ϵ with $A \in \mathbb{C}^{n \times n}$

$$T_M(n) = T_D(n) + \mathcal{O}(n^2)$$
Complexity

Let $T_U(n)$ be the worst case number of needed basic operations to calculate an unmodified LDL^H decomposition for all $A \in \mathbb{C}^{n \times n}$ which have a LDL^H decomposition and $S_U(n)$ the associated worst case number of needed memory cells.

$$T_U(n) = \mathcal{O}(n^3) \quad S_U(n) = \mathcal{O}(n^2)$$

Let $T_D(n)$ be the worst case number of basic operations to calculate $\text{DECOMPOSITION}(A, x, y, l, u, \epsilon)$ for all valid inputs A, x, y, l, u, ϵ with $A \in \mathbb{C}^{n \times n}$ and $S_D(n)$ the associated worst case number of needed memory cells.

$$T_D(n) = T_U(n) + \mathcal{O}(n^2) \quad S_D(n) = S_U(n) + \mathcal{O}(n)$$

Let $T_M(n)$ be the worst case number of basic operations to calculate $\text{MATRIX}(A, x, y, l, u, \epsilon)$ for all valid inputs A, x, y, l, u, ϵ with $A \in \mathbb{C}^{n \times n}$ and $S_M(n)$ the associated worst case number of needed memory cells.

$$T_M(n) = T_D(n) + \mathcal{O}(n^2)$$
Complexity

Let $T_U(n)$ be the worst case number of needed basic operations to calculate an unmodified LDL^H decomposition for all $A \in \mathbb{C}^{n \times n}$ which have a LDL^H decomposition and $S_U(n)$ the associated worst case number of needed memory cells.

$$T_U(n) = \mathcal{O}(n^3) \quad S_U(n) = \mathcal{O}(n^2)$$

Let $T_D(n)$ be the worst case number of basic operations to calculate $DECOMPOSITION(A, x, y, l, u, \epsilon)$ for all valid inputs A, x, y, l, u, ϵ with $A \in \mathbb{C}^{n \times n}$ and $S_D(n)$ the associated worst case number of needed memory cells.

$$T_D(n) = T_U(n) + \mathcal{O}(n^2) \quad S_D(n) = S_U(n) + \mathcal{O}(n)$$

Let $T_M(n)$ be the worst case number of basic operations to calculate $MATRIX(A, x, y, l, u, \epsilon)$ for all valid inputs A, x, y, l, u, ϵ with $A \in \mathbb{C}^{n \times n}$ and $S_M(n)$ the associated worst case number of needed memory cells.

$$T_M(n) = T_D(n) + \mathcal{O}(n^2) \quad S_M(n) = S_D(n) + \mathcal{O}(n)$$
Implementation

- Implemented in Python
- `conda install -c jore matrix-decomposition`
- `pip install matrix-decomposition`
- `git clone https://github.com/jor-/matrix-decomposition.git`
Implementation
Implementation

- implemented in Python
Implementation

- implemented in Python
- conda install -c jore matrix-decomposition

pip install matrix-decomposition

git clone https://github.com/jor-/matrix-decomposition.git
Implementation

- implemented in Python
- conda install -c jore matrix-decomposition
- pip install matrix-decomposition
Implementation

- implemented in Python
- conda install -c jore matrix-decomposition
- pip install matrix-decomposition
- git clone https://github.com/jor-/matrix-decomposition.git
Summary

The algorithm MATRIX

allows to approximate Hermitian matrices $A \in \mathbb{C}^{n \times n}$ by positive (semi-)definite matrices $B \in \mathbb{C}^{n \times n}$.

allows to bound B_{ii} by parameters for all $i \in \{1, \ldots, n\}$.

allows to control $\kappa_2(B)$ by parameters.

tries to minimize $\|B - A\|_F$.

ensures that $B = A$ if A satisfies the requirements on B.

ensures that B is sparse if A is sparse.

is numerical stable.

has negligible time and space overhead compared to the unmodified LDL^H decomposition algorithm.

provides a LDL^H decomposition of B as a by-product.
The algorithm MATRIX

- allows to approximate Hermitian matrices $A \in \mathbb{C}^{n \times n}$ by positive (semi-)definite matrices $B \in \mathbb{C}^{n \times n}$.
Summary

The algorithm MATRIX

* allows to approximate Hermitian matrices $A \in \mathbb{C}^{n \times n}$ by positive (semi-)definite matrices $B \in \mathbb{C}^{n \times n}$.
* allows to bound B_{ii} by parameters for all $i \in \{1, \ldots, n\}$.
* tries to minimize $\|B - A\|_F$.
* ensures that $B = A$ if A satisfies the requirements on B.
* ensures that B is sparse if A is sparse.
* is numerical stable.
* has negligible time and space overhead compared to the unmodified LDL₂ decomposition algorithm.
* provides a LDL₂ decomposition of B as a by-product.
Summary

The algorithm MATRIX

- allows to approximate Hermitian matrices $A \in \mathbb{C}^{n \times n}$ by positive (semi-)definite matrices $B \in \mathbb{C}^{n \times n}$.
- allows to bound B_{ii} by parameters for all $i \in \{1, \ldots, n\}$.
- allows to control $\kappa_2(B)$ by parameters.
Summary

The algorithm MATRIX
- allows to approximate Hermitian matrices $A \in \mathbb{C}^{n \times n}$ by positive (semi-)definite matrices $B \in \mathbb{C}^{n \times n}$.
- allows to bound B_{ii} by parameters for all $i \in \{1, \ldots, n\}$.
- allows to control $\kappa_2(B)$ by parameters.
- tries to minimize $\|B - A\|_F$.
- ensures that $B = A$ if A satisfies the requirements on B.
- ensures that B is sparse if A is sparse.
- is numerical stable.
- has negligible time and space overhead compared to the unmodified LDL^H decomposition algorithm.
- provides a LDL^H decomposition of B as a by-product.
Summary

The algorithm MATRIX

- allows to approximate Hermitian matrices $A \in \mathbb{C}^{n \times n}$ by positive (semi-)definite matrices $B \in \mathbb{C}^{n \times n}$.
- allows to bound B_{ii} by parameters for all $i \in \{1, \ldots, n\}$.
- allows to control $\kappa_2(B)$ by parameters.
- tries to minimize $\|B - A\|_F$.
- ensures that $B = A$ if A satisfies the requirements on B.
Summary

The algorithm MATRIX

- allows to approximate Hermitian matrices $A \in \mathbb{C}^{n \times n}$ by positive (semi-)definite matrices $B \in \mathbb{C}^{n \times n}$.
- allows to bound B_{ii} by parameters for all $i \in \{1, \ldots, n\}$.
- allows to control $\kappa_2(B)$ by parameters.
- tries to minimize $\|B - A\|_F$.
- ensures that $B = A$ if A satisfies the requirements on B.
- ensures that B is sparse if A is sparse.
The algorithm MATRIX

- allows to approximate Hermitian matrices $A \in \mathbb{C}^{n \times n}$ by positive (semi-)definite matrices $B \in \mathbb{C}^{n \times n}$.
- allows to bound B_{ii} by parameters for all $i \in \{1, \ldots, n\}$.
- allows to control $\kappa_2(B)$ by parameters.
- tries to minimize $\|B - A\|_F$.
- ensures that $B = A$ if A satisfies the requirements on B.
- ensures that B is sparse if A is sparse.
- is numerical stable.
Summary

The algorithm MATRIX

- allows to approximate Hermitian matrices $A \in \mathbb{C}^{n \times n}$ by positive (semi-)definite matrices $B \in \mathbb{C}^{n \times n}$.
- allows to bound B_{ii} by parameters for all $i \in \{1, \ldots, n\}$.
- allows to control $\kappa_2(B)$ by parameters.
- tries to minimize $\|B - A\|_F$.
- ensures that $B = A$ if A satisfies the requirements on B.
- ensures that B is sparse if A is sparse.
- is numerical stable.
- has negligible time and space overhead compared to the unmodified LDL^H decomposition algorithm.
Summary

The algorithm MATRIX

- allows to approximate Hermitian matrices $A \in \mathbb{C}^{n \times n}$ by positive (semi-)definite matrices $B \in \mathbb{C}^{n \times n}$.
- allows to bound B_{ii} by parameters for all $i \in \{1, \ldots, n\}$.
- allows to control $\kappa_2(B)$ by parameters.
- tries to minimize $\|B - A\|_F$.
- ensures that $B = A$ if A satisfies the requirements on B.
- ensures that B is sparse if A is sparse.
- is numerical stable.
- has negligible time and space overhead compared to the unmodified LDL^H decomposition algorithm.
- provides a LDL^H decomposition of B as a by-product.